
UCRL-PROC-208572

Verification and Validation using
DAKOTA via the DakTools
scripts

Scott Brandon, Peter Tipton

December 14, 2004

Nuclear Explosives Code Developers' Conference 2004
Livermore, CA, United States
October 4, 2004 through October 7, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Proceedings from the NECDC 2004

Verification and Validation using DAKOTA via
the DakTools scripts

Scott Brandon* and Peter Tipton**

*Lawrence Livermore National Laboratory , **University of Southern California

Several of the intermediate capabilities which are being developed by the AX
V&V program may be helpful in other ways. This paper describes a new
PYTHON interface to one such tool, DAKOTA (a parallel optimizing
controller from Sandia National Laboratory) and the subsequent simpler set of
operations required to run and analyze sets of calculations using any LCC
computational platform.

Introduction

A goal for the AX V&V Program is to develop a methodology and the
corresponding computational tools which allow the quantification of the uncertainty
in the results of calculational models to be determined. Several of the intermediate
capabilities which are being developed to pursue this goal may be helpful in other
ways. This paper describes a new interface to one such tool, DAKOTA (a parallel
optimizing controller from Sandia National Laboratory) and the subsequent simpler
set of operations required to run and analyze sets of calculations using any LCC
computational platform.

DAKOTA (Eldred et al., 2001 and Wojkiewicz et al., 2001)

DAKOTA is a massively parallel software tool kit which provides optimization,
uncertainty quantification, and statistical analysis tools. DAKOTA is available on
all of our computational platforms (both on clusters with just a few processors per
node and on massively parallel machines). The interface between DAKOTA and the
design code (often just a UNIX script file) requires no change in the application
code and only small changes in the code input files. Once DAKOTA is linked to the
application code, the full power of the available computational resources can be
used to simultaneously run and analyze problems of interest. Thus, studies which
require tens of thousands of hours of computer time can be completed in a time
scale measured in days to weeks.

Brandon, S.T. et al.

Proceedings from the NECDC 2004

Running DAKOTA/Application Code Problems on Multiple
Platforms

When run on a single platform using a single execution model (for example each
application code instance runs as a separate batch task), the UNIX program which
links DAKOTA and the application code approaches the simplicity of a “typical”
3-line UNIX shell script. However, if one wishes to run on all LCC platforms,
support multiple execution models (for example running each application code
instance on a separate MPI task from a single batch job), control complicated
post-processing procedures, and incorporate error detection and correction, the
simple UNIX shell script coupling DAKOTA and the application code becomes
complicated. Due to limitations of the shell language (in this case CSH), the
resulting script will contain information specific to the application code and the
user’s problem which is being executed. Thus, this CSH script can not be placed in
a public location and maintained for a large group of users.

The above problems can be corrected by rewriting the DAKOTA/application
code interface scripts in a programmable language, such as PYTHON. The
PYTHON conversion of the our DAKOTA interface scripts is now nearly complete.
A “beta” version of the new PYTHON based interface scripts is available in
/usr/apps/dakota/test/daktools on most LCC platforms. These scripts greatly
simplify the procedures needed by the user to run hundreds to thousands of
calculations using the DAKOTA controller running on any or all LCC platforms.

The DakTools DAKOTA Interface

The DakTools package consists of a set of tools that fit into the DAKOTA
workflow environment. These tools maximize the user’s efficiency in studying code
behavior by both providing machine independence and extending the DAKOTA
variable definition section. This simple structure allows users to easily set up and
run large sets of calculations, provides a mechanism to collect code and analysis
tools created by the user community, and allows multiple options to analyze data;
all with concurrent or parallel calculation capability.

Fig. 1 shows the components required to setup and analyze a set of calculations.
The calculations are controlled by DAKOTA via the user supplied DAKOTA input
file. With the exception of the variables section, which is omitted (it will be
automatically created by the DakTools interface), this is any standard
single method DAKOTA input file. The user supplied options script, the main
interface for the DakTools package, specifies run options for both DAKOTA and the
application code. Also supplied via the options file is an optional setup function and
the required output function. The setup function takes care of any initialization
that may be required by the application code. The output function defines and

Brandon, S.T. et al.

Proceedings from the NECDC 2004

returns values of the objective functions to DAKOTA. The remaining user supplied
file is the input deck for the application code.

Dakota Workflow Diagram

Figure 1: Dakota/DakTools workflow

The DAKOTA input file strategy (single method) and method selection sections
select which DAKOTA module will be used to control the application code. Classic
optimization procedures often require knowledge of previous results to determine
the choice of the next calculation. Hence most optimization procedures run
sequentially (or with low order parallelism). These methods are poorly matched to
today’s massively parallel computing platforms. DAKOTA also offers a variety of
sampling methods. These methods allow information to be collected via sets of
calculations spanning a large portion of the relevant parameter space of the
application code. Since each member of a parameter survey is independent of all the
others, parameter studies are embarrassingly parallel. By using tens to thousands of
CPU’s, parameter studies can often be completed in the real time required for just
one optimization cycle. Once the data set is available, traditional optimization
amounts to post processing the precalculated data set. A second parameter study,
with adapted parameter ranges, can be used to further refine the resulting set of
calculations which now may all satisfy the given constraints. Examination of the
parameter values which satisfy the constraint(s) may reveal degeneracies.

Brandon, S.T. et al.

Proceedings from the NECDC 2004

(Optimization strategies are likely to fail in the presence of degeneracies.)
Calculations which came close to satisfying the constraints provide information
about the behavior of the application code near the desired point. (Information
which is seldom obtained via standard optimization approaches.)

Introduction to the DakTools Interface to DAKOTA

The DakTools interface consists of nine PYTHON scripts augmented by three
user supplied files. A short description of the DakTools Interface files follows:

• daktools.py: main entry point for the DakTools/CODE interface tools

• cleardir: automates removal of DakTools generated files

• coderun.py: executes CODE with DAKOTA variables, returns objective
functions (can be user supplied)

• codetools.py: utility functions to help handle application codes (can be user
supplied)

• datatools.py: utility functions to help process CODE results

• interface.py: provides the interface between DAKOTA and CODE

• killjob: automates deletion of running DAKOTA/CODE jobs

• rundict.py: expands %%key%% constructs via a dictionary (general purpose
utility)

• runexe.py: controls interactive, batch, or parallel execution of it’s argument
(general purpose utility)

The three user supplied files are as follows:

• options.py: global options[arguments and variables] for daktools.py

• dakota.input: DAKOTA input [no variables section]

• code.deck: input deck template for CODE

In addition, there is an example options.py file and several complete working
example DAKOTA/CODE job files stored in the Examples subdirectory. Most of
the PYTHON files are at least partially self documenting [from PYTHON, import
the desired module and print module. doc]. Executing daktools.py with no
arguments causes daktools to print a short list of available arguments

Brandon, S.T. et al.

Proceedings from the NECDC 2004

The first step to use the DakTools interface is to set up the problem you wish to
investigate using the CODE you wish to use. Choose the parameters you wish
DAKOTA to vary and put together the DAKOTA input file. The DakTools
interface supports all DAKOTA single strategy methods. The interface portion of
the DAKOTA input is nearly standardized and the variables portion is created via
the DakTools interface. Hence, the user primarily modifies only the method and
responses portion of the DAKOTA input file. A typical LHS parameter study
DAKOTA input deck is shown in Fig. 2.

totalb.input - DAKOTA input for totalb LHS parameter study

strategy, \

single_method \

method, \

nond_sampling, all_variables \

samples = 1000 \

seed = 5 \

sample_type lhs \

interface, \

application system, \

analysis_driver = ’interface.py’ \

parameters_file = ’info.in’ \

results_file = ’info.out’ \

aprepro \

file_tag \

file_save \

responses, \

num_objective_functions = 3 \

no_gradients \

no_hessians

Figure 2: A DAKOTA input file for TOTALB calculations using the DAKOTA Latin
Hypercube Sampling (LHS) method.

The next step is to modify the code.deck input file to accept the variables to be
controlled via DAKOTA. This is accomplished by replacing occurrences of
“variable one” wherever it occurs in the CODE input file with the
“%%variable one%%” flag. DakTools will convert each occurrence of the flagged
variables with the DAKOTA generated values. More complete initializations can be
accomplished via the “setup” procedure defined within the “options.py” file. An
example TOTALB (Adams et al., 2002) input file is shown in Fig. 3.

Brandon, S.T. et al.

Proceedings from the NECDC 2004

Infile tot001001_n5

Outfile a10.out

Profile tot.xy

Atomw 1.0079

Zrad 0.0

Zp 1.0

B 0.0

Ne %%Ne%%

Te %%Te%%

Range 10.195 10.215

Nmc 50

Grid 4096

Reduce all onlyn

Runtype real

Angc -1

Pol 2

Doppler

end

Figure 3: A DAKOTA input file for TOTALB calculations.

Finally, prepare the “options.py” file. This is the main interface to the DakTools
package and provides argument options and input variables to the daktools.py
script. Many of the available options have default values. However, you must always
at least specify the code deck and code path arguments. It is in this file that you
choose how DAKOTA and the application CODE is to be run [interactive/batch,
parallel/serial]. The “setup” function is optional. But you must specify the output
function which is used to return objective function values to DAKOTA. The
arguments and variables portion of a “options” file corresponding the the TOTALB
LHS parameter study is shown in Fig. 4. The setup and output functions for
TOTALB LHS parameter study are shown in Fig. 5. DakTools is being told to
execute DAKOTA using 16 processors on the current HOST (Note: HOST must be
a parallel machine!).

All required input files are now setup and ready to be tested. Use the following
command to execute daktools.py and test much of the file syntax:

/.../daktools.py –norun options.py

This will cause most of the files required to run your problem to be created. The
“–norun” option prevents any jobs from being actually run. You are free to examine
various files and determine if your problem will do what you expect.

Your problem is executed by entering the following command:

Brandon, S.T. et al.

Proceedings from the NECDC 2004

##

#--- global options provided by client

##

import commands, os, sys

OPTIONS

most have defaults and all can be set via command line arguments

arguments = {

’problem_name’ : ’totalbLHS’,

######################## USER PROVIDED FILES

’dakota_deck’ : ’totalbLHS.input’,

’code_deck’ : ’tot.inp’,

######################## DAKOTA

’dakota_path’ : ’/g/g14/brandon/Dakota/Dakota_3.1.2/Dakota/bin/dakota’,

’dakota_mode’ : ’batch’, #interactive | batch

’dakota_procs’ : ’6’,

######################## CODE

’code_path’ : ’/nfs/tmp3/brandon/totalb/totalb’,

######################## MISC

’timeout’ : ’600’ # timeout for batch submission

}

Simulation Variables

variables = r"""

Ne 1.0e+12 1.0e+14 1.0e+17 = log

Te 1.0 2.0 5.0 = lin 0 1 2

"""

Figure 4: The “args” and “variables” definition sections from the TOTALB DakTools
options file.

/.../daktools.py options.py

If you wish you may add other arguments such as:

/.../daktools.py -code mode=”interactive” options.py

The execute line options over ride the values (if any) set within the options.py user
supplied file.

Brandon, S.T. et al.

Proceedings from the NECDC 2004

def setup():

os.system(’ln -fs ../tot001001_n5 .’)

return

def output():

import codetools, glob

#########writout output file for dakota

................................. replace the following with py_tabnormu

tabnormu = ’/g/g14/brandon/HDG_east/hodag/tools/’+os.getenv(’SYS_TYPE’)+’/bin/tabnormu’

os.system(’ln -s ../tot.tas .’)

os.system(’%s tot > taboutput’ % tabnormu)

tot_dif = glob.glob("*tot.dif")

if len(tot_dif) > 0:

............................... tabnormu norm data exists

line = commands.getoutput(’cat tot.dif | grep ONE’)

f1 = float(line.split()[2])

line = commands.getoutput(’cat tot.dif | grep TWO’)

f2 = float(line.split()[2])

line = commands.getoutput(’cat tot.dif | grep MAX’)

f3 = float(line.split()[2])

else:

f1 = 1.0e+99

f2 = 1.0e+99

f3 = 1.0e+99

f = [f1,f2,f3]

return f

Figure 5: The “setup” and “output” function definitions from the TOTALB DakTools
options file.

The DakTools interface runs each application code instance in its corresponding
run directory. The run directories are named “run0001-runNNNN”. The setup and
output functions can take advantage of this organization by linking files from the
parent directory into the run directory. For example the command, “ln -s ../*.py .”,
will cause all PYTHON files in the parent directory to be soft linked to the run
directory. The output function, which is always executed after the application code
completes, can clean up files left behind by the application code. If the application

Brandon, S.T. et al.

Proceedings from the NECDC 2004

code data files are left intact, the daktools.py option, “–pp” is available to run the
output function over the complete data set. This option can run the post processor
(controlled by the output function) concurrently over the entire data set; reducing
the time and effort required to analyze large DAKOTA/application CODE data sets.

The daktools.py script is designed to be executed using the complete file path
specification of the daktools.py file [usually somewhere in /usr/gapps/dakota] on
the host you wish to run DAKOTA and the application code. If you alter your
“path” variable to access daktools.py, you must insure that the directory “.” occurs
earlier in you “path” variable than the daktools.py directory. If this is not the case,
you will get PYTHON errors complaining about “%%key%%” constructs! Having
DAKOTA or the application code run (batch only) on a different host than the one
you execute daktools.py is possible; and sometimes very handy. Occasionally there
are machines available to run the application CODE, but with no DAKOTA version
available. In this case, run DAKOTA on an alternate machine and use the
“code host” (set to the desired host) and “code env” (set to ’batch’) commands to
run the application CODE on the new machine. Note: running the application
CODE in the batch mode requires some changes to be made in the DAKOTA input
file. In the “interface” section change the line “application system” to “application
asynchronous system” and add an additional line to determine the desired
evaluation concurrency (“evaluation concurrency = 6”). DAKOTA will then
monitor the progress of the application CODE batch tasks and try to keep
evaluation concurrency of them running.

A DakTools Example

We wish to run the Sedov verification problem in 2-D using CALE (Tipton,

1998) in both the Lagrange and ALE modes and for multiple resolutions. The
CALE input syntax allows the mesh resolution to be specified via a parameter in
the input file. We choose to allow DakTools to directly manipulate this mesh
resolution variable. We will choose the DAKOTA variable “nzones” to represent the
desired mesh resolution. Specifying the use or absence of ALE operations presents
more of a challenge. There are multiple ALE commands which naturally occur in
several places within the CALE input deck. We choose to include all of the ALE
commands, prefixed with a comment (“*Ale ”), in the Lagrange input file. By
default CALE will then run Lagrangian. We will give our “setup” function to task
to remove the “*Ale “ comments when an ALE result is desired. We choose the
DAKOTA variable “nale” to represent Lagrangian (nale=0) or ALE (nale=1)
calculation modes. We will use an arbitrary set of mesh resolutions; suggesting the
DAKOTA “list parameter study” method. This is sufficient information to complete
the DAKOTA input file which we will call “Sedovc 2d.input”. This file is shown in
Fig. 6.

Brandon, S.T. et al.

Proceedings from the NECDC 2004

Sedovc_2d.input - DAKOTA script for CALE 2-D Sedov verification problems

strategy, \

single_method \

method, \

list_parameter_study \

list_of_points = \

16 0 \

16 1 \

23 0 \

23 1 \

45 0 \

45 1 \

90 0 \

90 1 \

180 0 \

180 1 \

360 0 \

360 1 \

#720 0 \

#720 1 \

interface, \

#application system, \

application asynchronous system, \

evaluation_concurrency = 6 \

analysis_driver = ’interface.py’ \

parameters_file = ’info.in’ \

results_file = ’info.out’ \

aprepro \

file_tag \

file_save

responses, \

num_objective_functions = 1 \

no_gradients \

no_hessians

Figure 6: A DAKOTA input file for CALE Sedov problems using the “list” method.

We also have enough information to complete the CALE input file, Sedovc 2d.
This file is shown in Fig. 7. Note that the ifadvec variable is now initialized by
“%%nale%%” which will be expanded automatically by DakTools. Likewise, the NZ

Brandon, S.T. et al.

Proceedings from the NECDC 2004

variable is now initialized by “%%nzones%%” which will also be expanded
automatically by DakTools.

**

*

* Sedovc_2d (blast wave)

*

* Two dimensional model of the Sedov Blast Wave test problem

*

* Models the blast on full plane in cylindrical geometry

*

**

*

* set parms

*

......

* .. hydro controls

set ifadvec %%nale%% * Lagrange/ALE mode (0 is Lagrangian)

......

def NZ %%nzones%% * nzones

......

*

*Ale gridmove relax 1 1 KX LX- * relax all nodes

*Ale ale kntrp2 1 1 2 {max(3, (5 * NZ) / 45)} 1.0

*

......

run

showcpu

pampfile Sedovc_2d.u

tpamp

......

Figure 7: A portion of the CALE input file for 2-D Sedov test problems.

We are now ready to complete the user supplied options file which we will name
“Sedeovc 2d options.py”. We must overcome several challenges to complete this
task. First, we choose to run CALE on the LCC ILX cluster. ILX is a cluster of
servers, hence the normal DAKOTA MPI mode is not available. We will have to run
the CALE calculations as a separate batch task. Second, ILX was recently
converted to the CHAOS II operating system and a ILX version of DAKOTA is not
yet available. However, the RedHat version of DAKOTA will still run, as long as we

Brandon, S.T. et al.

Proceedings from the NECDC 2004

don’t try to run it as an MPI parallel task! Third, a substantial amount of
preprocessing is required to control file names and the ALE option. These tasks will
all be handled via our “setup” function. Finally, a significant amount of post
processing is also required. We must insure that all files are uniquely named,
calculate the Ln norms between the CALE calculation and the analytical solution,
and move all files from the “run” directories to the more permanent “problem”
directories. The options and variables section of the “Sedovc 2d options.py” file is
shown in Fig. 8, the setup function is shown in Fig. 9 and the output function is
shown in Fig. 10.

Information is communicated from DAKOTA to the application CODE via
input files, always called “info.in.nnn” by DakTools. If any of the DAKOTA
variables must be used by the “setup” or “output” functions, they must either parse
the “info.in.nnn” files for this information or take advantage of hints left behind by
the application CODE. Our “setup.py” function uses a grep—awk pipe to determine
the values of “nzones” and “nale”. A private PYTHON utility, re string (Regular
Expression string replacement), is used as a simplified SED to manipulate the
CALE input deck. The “output” function obtains the value of “nzones” and “nale”
(now called “mod”) by parsing the name of the “Sedov 2d[ab] nzones.success” file.
This file is only created when the problem successfully completes; providing a simple
test on whether or not CALE completed the problem. (In this example, CALE will
fail to complete the test problem when run in the Lagrange mode for resolutions
greater than nzones=180.) Another private PYTHON utility function, tabnormu, is
used to calculate the Lnorms between the CALE and analytic solutions.

The codetools.py and datatools.py DakTools scripts are collections of general
purpose utilities intended to simplify the data analysis and code setup functions
appearing in the DakTools option files. Both of the previous private PYTHON
utility functions, re string and tabnormu, are candidates for inclusion into the
DakTools codetools.py or datatools.py scripts. Once a utility is added to either of
these PYTHON files, it becomes available to all other DakTools users. The ability
to easily add user created PYTHON modules to the DakTools collection provides
and important mechanism to improve the utility of the DakTools environment.

ILX is fairly heavily loaded. This example restricts the concurrency to 6. Often
the batch system will deliver a concurrency less than 6. Normally, a concurrency of
between 3-6 is observed. Hence, with the penalty of “wasting” a processor to run
DAKOTA, the speedup offered by using this DakTools script is between 3-6 and
limited only by the capacity of the machine and the number of desired calculations.

To achieve speedups of 100-1000, you must run on one of the MPI parallel
machines, such as MCR. The maximum run time and the availability of resources
are both quite restricted. However, obtaining 100 processors for 12 hours at a time
is fairly reliable. Dedicated access time (available each weekend) is needed to run at

Brandon, S.T. et al.

Proceedings from the NECDC 2004

##

#--- global options provided by client

##

import commands, os, sys

OPTIONS

most have defaults and all can be set via command line arguments

arguments = {

’problem_name’ : ’Sedovc_2d’,

######################## USER PROVIDED FILES

’dakota_deck’ : ’Sedovc_2d.input’,

’code_deck’ : ’Sedovc_2d’,

######################## DAKOTA

’dakota_path’ : ’/usr/gapps/dakota/redhat_7a_ia32/dakota’,

’dakota_mode’ : ’batch’, #interactive | batch

’dakota_procs’ : ’0’,

######################## CODE

’code_path’ : ’/usr/gapps/cale/’+os.getenv(’SYS_TYPE’)+’/cale’,

’code_mode’ : ’batch’,

’code_tM’ : ’1200’,

######################## MISC

’timeout’ : ’600’ # timeout for batch submission

}

Simulation Variables

variables = r"""

nzones 45 45 720 # mesh resolution (list method wins)

nale 0 0 1 # ALE cycles (list method wins)

"""

Figure 8: The options and variables section of the CALE Sedov DakTools options
file.

levels of 1000 (or more) processors. A factor of 100 (or more) speedup is enough to
make large scale parameter studies a viable alternate to even highly effective
optimization strategies.

Brandon, S.T. et al.

Proceedings from the NECDC 2004

def setup():

import codetools, commands, string

os.system(’ln -fs ../re_string.py .’)

os.system(’ln -fs ../Sedov.tas .’)

os.system(’ln -fs ../py_tabnormu.py .’)

import re_string

......................... finish updating/creating CALE input file

nzones_str = commands.getoutput("grep nzones info.in* | awk ’{print $4}’")

nzones = int(string.atof(nzones_str))

nale_str = commands.getoutput("grep nale info.in* | awk ’{print $4}’")

nale = int(string.atof(nale_str))

inDict = {’*end’:’end’, # stop when run is complete

’ tv’:’* tv’} # disable interactive plots

if nale == 1:

.. this is an ALE problem

mod = ’b’

inDict[’*Ale’] = ’’ # enable ALE commands

else:

.................................... this is a LAGRANGE problem

mod = ’a’

outName = "Sedovc_2d" + mod + ("_%i" % nzones)

inDict[’Sedovc_2d’] = outName # set problem name

PWD = os.getenv(’PWD’)

prob_dir = PWD[:PWD.find("/run")] + ’/Sedovc_2d’ + mod

inDict[’prob_dir’] = prob_dir

re_string.rpl_file("Sedovc_2d", inDict, outName)

return ’time %%exe%% ’ + outName # define new ’code_cmd’

Figure 9: The “setup” function definition from the CALE Sedov DakTools options
file.

Summary

This paper describes DakTools, a new PYTHON interface to DAKOTA (a
parallel optimizing controller from Sandia National Laboratory). DakTools frees the
user from many of the harsh realities encountered while running on disparate LCC
platforms. The subsequent simpler set of operations required to concurrently run
and analyze sets of calculations, using any available LCC platform, allows the user
to more easily take advantage of today’s large, parallel computational environments.

Brandon, S.T. et al.

Proceedings from the NECDC 2004

References

[1] Adams, M.L., Lee, R.W., Scott, H.A, Chung, H.K., and Klein, L., ”Complex
atomic spectral line shapes in the presence of an external magnetic field,” Phys.
Rev. E, 66, Number 6-2, pp. 066413 1-12 (2002).

[2] Eldred, M.S., Giunta, A.A., van Bloemen Waanders, B.G., Wojkiewicz, S.F. Jr.,
Hart, W.E., and Alleva, M.P., ”DAKOTA, A Multilevel Parallel
Object-Oriented Framework for Design Optimization, Parameter Estimation,
Uncertainty Quantification, and Sensitivity Analysis,” Version 3.0 Reference
Manual, Sandia National Laboraties, SAND 2001-3515 (2001).

[3] Robert Tipton, ”CALE Users Manual,” LLNL (1998) [export controlled].

[4] Wojkiewicz, S.F., Eldred, M.S., Field, F.V. Jr., Urbina, A. and Red-Horse, J.R.,
“Uncertainty Quantification iIn Large Computational Engineering Models,”
American Institute of Aeronautics and Astronautics, AIAA-2001-1455 (2001).

Acknowledgments

This work was performed under the auspicies of the Department of Energy by
the University of California Lawrence Livermore National Laboratory under
contract No. W-7405-ENG-36.

Brandon, S.T. et al.

Proceedings from the NECDC 2004

def output():

import codetools, commands, glob, os, string, py_tabnormu

............................ determine problem name and "mod"

successFile = glob.glob("*Sedovc_2d*.success")[0]

if successFile == []:

... stop if error

print " Run "+os.getcwd()+" has failed"

return [1.0e+99]

i1 = successFile.find("_2d")

i2 = successFile.find(".success")

base = successFile[0:i1+3]

mod = successFile[i1+3:i1+3+successFile[i1+3:].find("_")]

prob = successFile[0:i2]

strNzones = successFile[i1+3+successFile[i1+3:].find("_")+1:i2]

print " * strNzones = ’%s’" % strNzones

nzones = string.atoi(strNzones)

print " * base=’%s’, mod=’%s’, prob=’%s’, nzones=’%d’" % \

(base, mod, prob, nzones)

........................ rename remaining generic CALE files

os.rename("cale.cgm00", prob+".cgm00")

os.rename("calehsp", prob+"hsp")

os.rename("calez", prob+"z")

os.system("mv cale*.silo %s_final.silo" % prob)

... calculate Lnorms

py_tabnormu.tabnormu(prob, "Sedov", 1.125, nzones, 1)

if mod <> ’’:

................. copy output files into standard directories

os.system(’pwd;ls’)

try:

............................ create any missing directories

os.mkdir("../%s" % (base+mod))

except:

pass

os.system(’cp %s* ../%s’ % (prob, (base+mod)))

return [1.0] # stub for now

Figure 10: The “output” function definition from the CALE Sedov DakTools options
file.

Brandon, S.T. et al.

